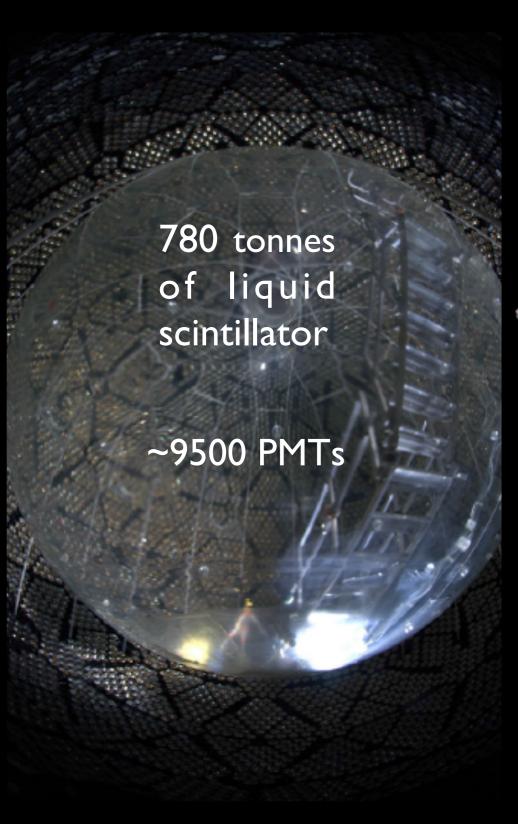
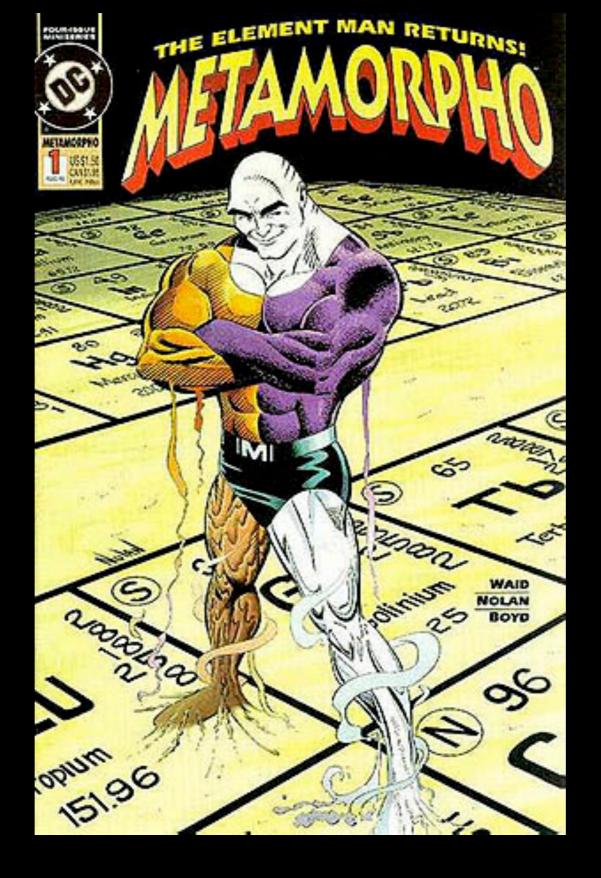


SNO+ with Tellurium

Steve Biller, TAUP 2013





Neutrinoless double-beta decay

- Low energy solar neutrinos
- Geo-neutrinos
- Reactor neutrinos (Δm_{12}^2)
- Supernova neutrinos (Vp-Vp)
- Nucleon decay ("invisible" modes)

Transition to Tellurium

Potential for 130 Te as an ideal isotope for a LS-loaded $0\nu\beta\beta$ experiment

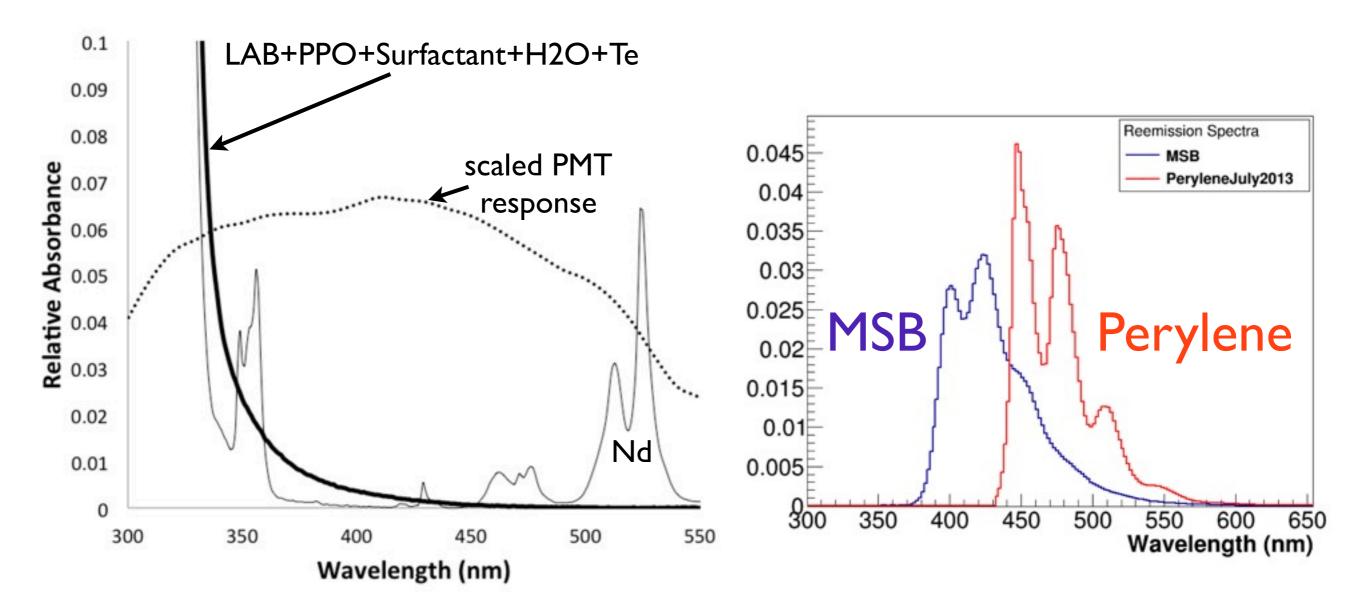
Biller and Chen (Autumn 2011) emphasized potential advantages of Te-loading and initiated development.

- 34% natural abundance;
- Internal U/Th can be actively suppressed (Bi-Po αs);
- External gammas can be attenuated ("fiducialisation");
- $2\nu\beta\beta$ rate is low (~100 times smaller than for ¹⁵⁰Nd);
- No inherent optical absorption lines;
- Relatively inexpensive (< a tenth the cost of ¹³⁶Xe).

Initial loading/purification studies by Yeh et al. during 2012.

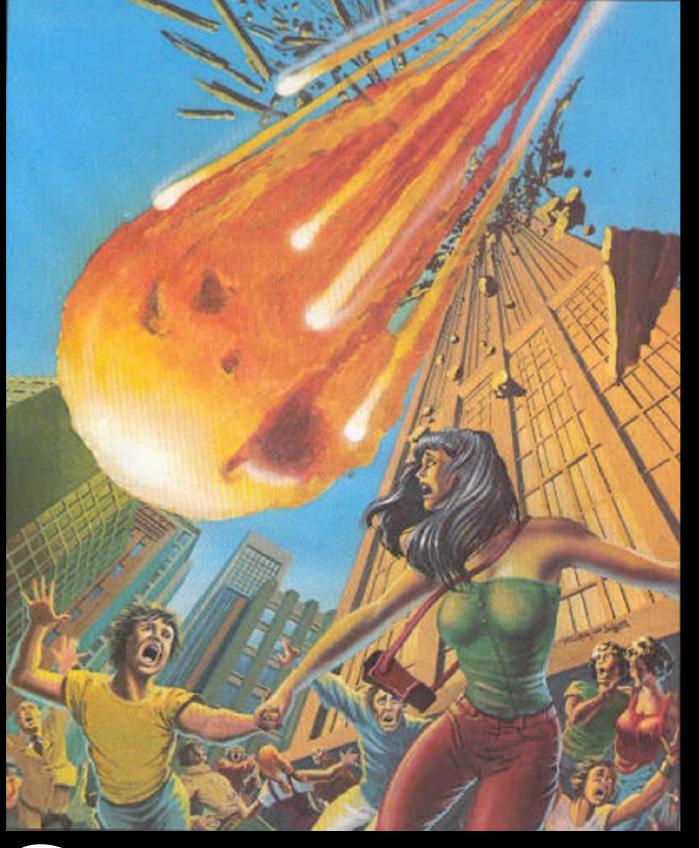
Subsequently underwent thorough, independent internal review from Aug 2012 - Feb 2013. This resulted in the decision to pursue Te as a first priority, which has since been the focus of a full collaboration development effort.

Loading


New loading technique (BNL):

Dissolve telluric acid in water (highly soluble), then combine a small fraction (few percent) of this mixture with LAB using a surfactant Clear and stable (>1 yr explicitly demonstrated)

(M. Yeh et al., paper in preparation)


Spike tests show metal scavengers reduce U/Th by ~ 800 in single pass (target is a total reduction of $\sim 10^4$)

Higher U/Th than pure organic, but still low enough with SNO purification levels (10⁻¹⁴-10⁻¹⁵ g/g)

Studies suggest average light levels of ~200-300 pe/MeV*

* Based on multi-component scintillator model extrapolating laboratory measurements of absorption, emission and intrinsic light yield of both the full TeLS mixture and individual constituents. Validity of the model was verified by scaling performance estimates to known scintillator experiments and from an analysis of light production from one liter of scintillator contained in an acrylic container deployed in the SNO detector during 2008.

Cosmogenics (and other annoyances)

Isotope	$T_{1/2}$ [5]	Q-value [5]	R (ϕ from [6][7])	Events/yr in ROI
$(0 > 2 \text{ MeV}, T_{\text{tot}} > 20 \text{ days})$	[d]	[MeV]	$[\mu \mathrm{Bq/kg}]$	after 1 yr
$(Q > 2 \text{ MeV}, T_{1/2} > 20 \text{ days})$	555500	38 32	Base 1866 1000	surface exposure
⁴⁴ Sc (daughter of ⁴⁴ Ti)	0.17 (2.16E+4)	3.65	1.19 (0.052)	5.41
$^{46}\mathrm{Sc}$	83.79	2.37	1.97	20.3
⁶⁰ Co (direct and daughter of ⁶⁰ Fe)	1925.27 (5.48E+8)	2.82	0.81 (0.367)	834
⁶⁸ Ga (daughter of ⁶⁸ Ge)	4.70E-2(271)	2.92	3.14 (1.28)	344
$^{26}\mathrm{Al}$	2.62E+8	4.00	0.67	2.20E-4
⁸² Rb (daughter of ⁸² Sr)	8.75E-4(25.35)	4.40	(2.44)	440
⁸⁸ Y (direct and daughter of ⁸⁸ Zr)	106.63 (83.4)	3.62	3.14 (8.11)	3.61E4
⁴² K (daughter of ⁴² Ar)	0.51 (12016.73)	3.53	1.33 (0.24)	10.0
⁵⁶ Co	77.2	4.57	0.13	0.350
⁵⁸ Co	70.9	2.31	1.29	0.252
$^{110m}\mathrm{Ag}$ a	249.83	3.01	2.34	3.61E3
110 Ag (daughter of 110m Ag) b	2.85E-4	2.89	(0.03)	48.6
¹⁰⁶ Rh (daughter of ¹⁰⁶ Ru)	3.47E-4 (371.8)	3.54	(0.06)	21.8
^{126m} Sb (direct and daughter of ¹²⁶ Sn) ^c	0.01 (8.40E7)	3.69	71.42 (7.87)	8.63
¹²⁶ Sb (direct and daughter of ^{126m} Sb) ^d	12.35 (0.01)	3.67	89.65 (^{126m} Sb)	1.29E4
$^{22}\mathrm{Na}$	950.6	2.84	1.01	1.01E3
⁸⁴ Rb ^e	32.8	2.69	1.29	24.2
⁹⁰ Y (daughter of ⁹⁰ Sr)	2.67 (10519.2)	2.28	2.69 (0.165)	7.90E-3
$^{102}\mathrm{Rh}$ (direct and daughter of $^{102m}\mathrm{Rh}$) f	207.3	2.32	11.77 (0.03)	35.9
$^{102m}\mathrm{Rh}$ g	1366.77	2.46	11.77	69.9
$^{124}\mathrm{Sb}$	60.2	2.90	182.0	1.62E5

ACTIVIA code, cross sections from Silberberg et al. and TENDL-2009 database, flux parameterisations from Armstrong and Gehrels. Variations from using YIELDX code, TENDL-2012 database, and fluxes from Ziegler change estimated rates by up to a factor of two. Consistency also checked against CUORE beam activation study (Wang et al.) and KamLAND induced backgrounds.

(V. Lozza, paper in preparation)

Requires a reduction factor of $> 10^4$ for these isotopes, which is also comparable to the reduction required for U/Th in "raw" Te material (ICP-MS: $2-3\times10^{-11}$ g/g)

Outline of Te Purification Strategy

(paper in preparation)

(Stage I)

- 2 Surface passes:
 - Dissolve Te(OH)₆ in water
 - Recrystalise using nitric acid
 - Rinse with ethanol

>10⁴ reduction

Allow up to 5 hr re-exposure to finish & transport UG

(Stage 2)

- 2 Underground passes:
 - Dissolve in warm water (80°C)
 - Cool to Recrystalise thermally

>10² reduction

(~50% Te "loss" recovered by recycling to surface system)

Spike Tests (Ongoing)

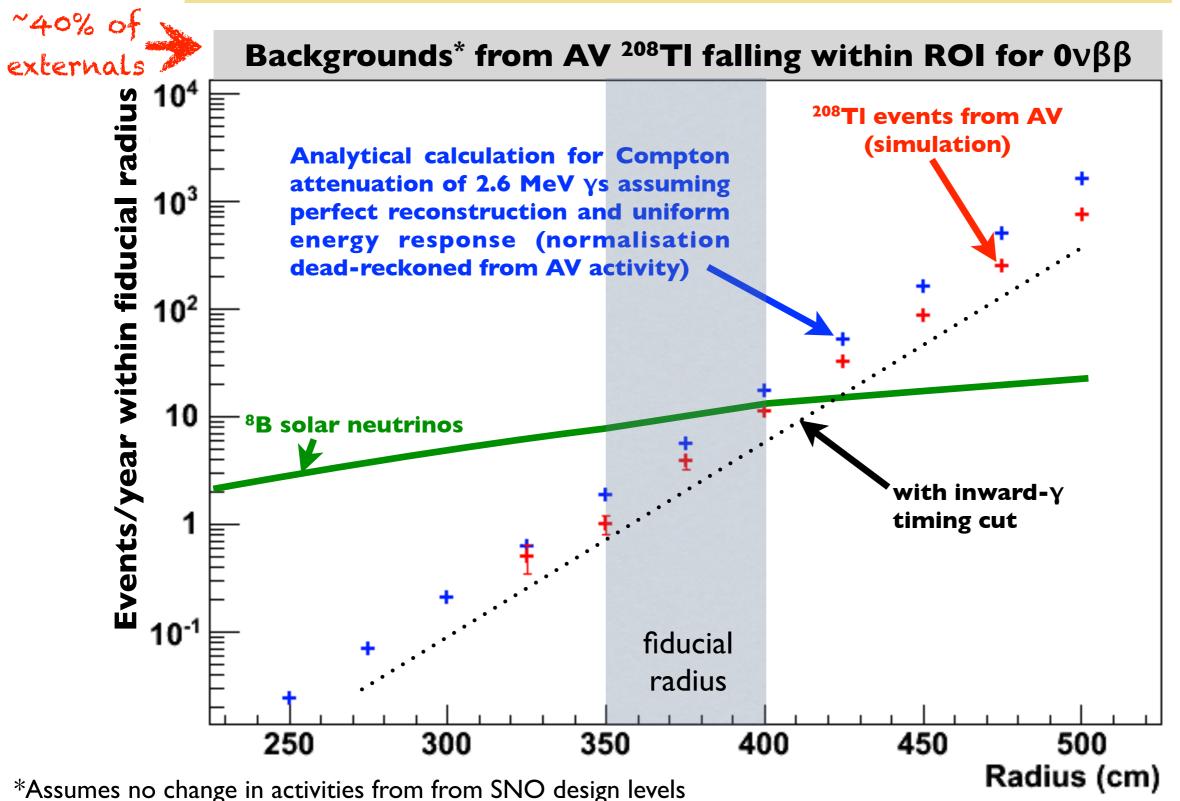
Zr

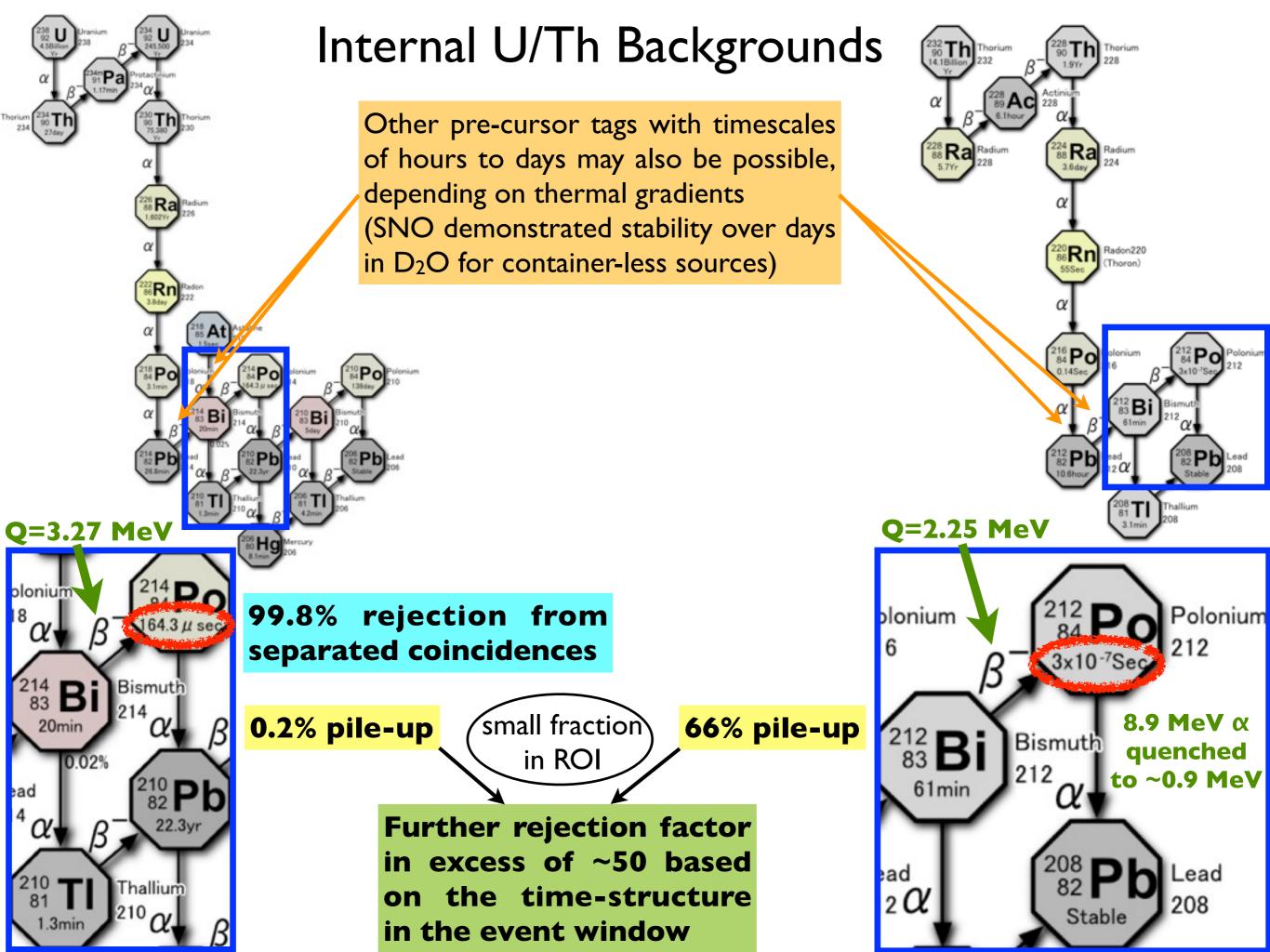
17

Element	Reduction	Assay				
	Factor	Technique				
Stage 1 Te purification, single-pass spike test						
Co 1555 ± 326		XRF				
Sb	>243	XRF				
Sn	> 167	XRF				
Fe	> 100	XRF				
Na	> 346	XRF				
Sc	> 165	XRF				
Ge	> 333	XRF				
Y	> 278	XRF				
Zr	> 278	XRF				
Ag	> 278	XRF				
Pb-212	299 ± 22	$\beta - \alpha$ counting				
Bi-212	348 ± 81	$\beta - \alpha$ counting				
Ra-224	397 ± 20	$\beta - \alpha$ counting				
Th-228	390 ± 19	$\beta - \alpha$ counting				
Stage 1 Te purification, double-pass spike test						
Co	3.7×10^5	XRF				
Pb-212	$> 10^4$	$\beta - \alpha$ counting				
Bi-212	$> 10^4$	$\beta - \alpha$ counting				
Ra-224	$> 10^4$	$\beta - \alpha$ counting				
Th-228	$> 10^4$	$\beta - \alpha$ counting				
Stage 2 (UG) Te purification, single-pass spike test						
Co	12	XRF				
Ag	> 20	XRF				
	1 🗕	VDD				

XRF

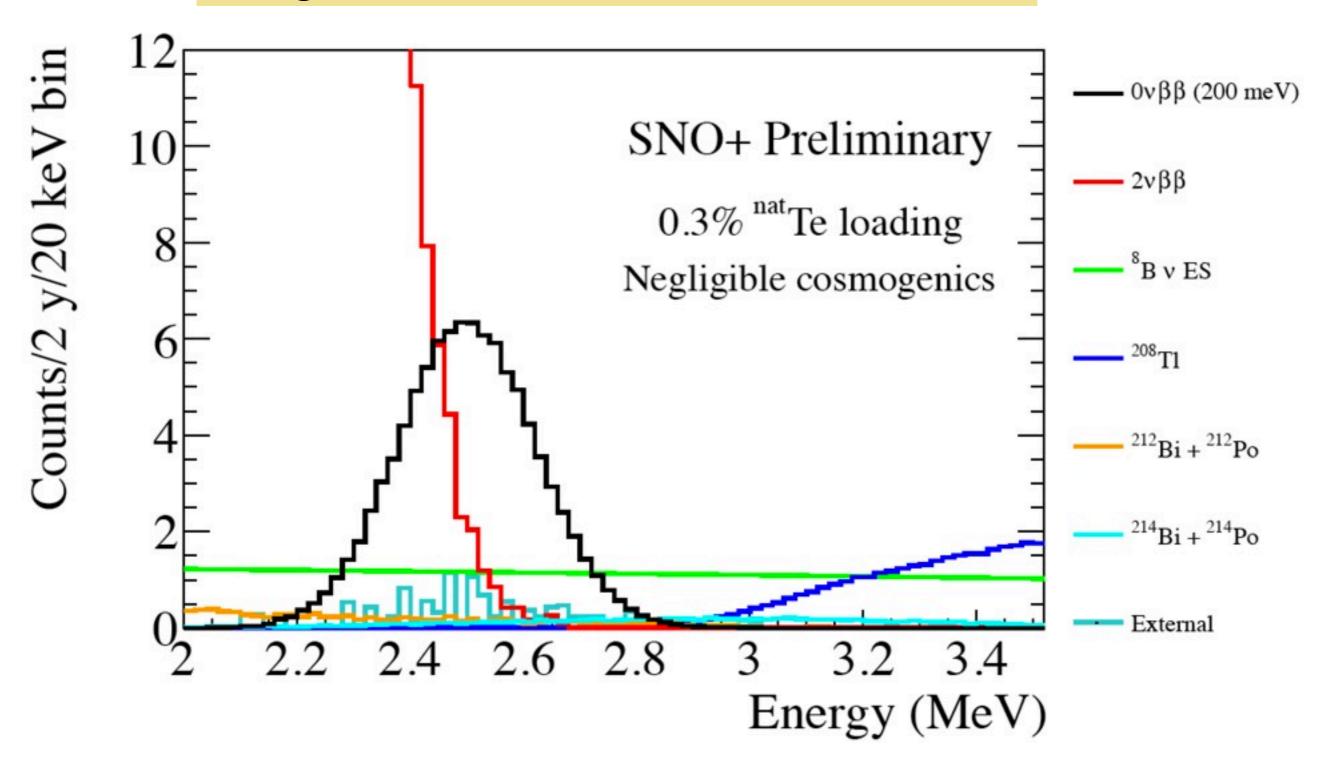
acid-inducedrecrystalisation+ ethanol wash

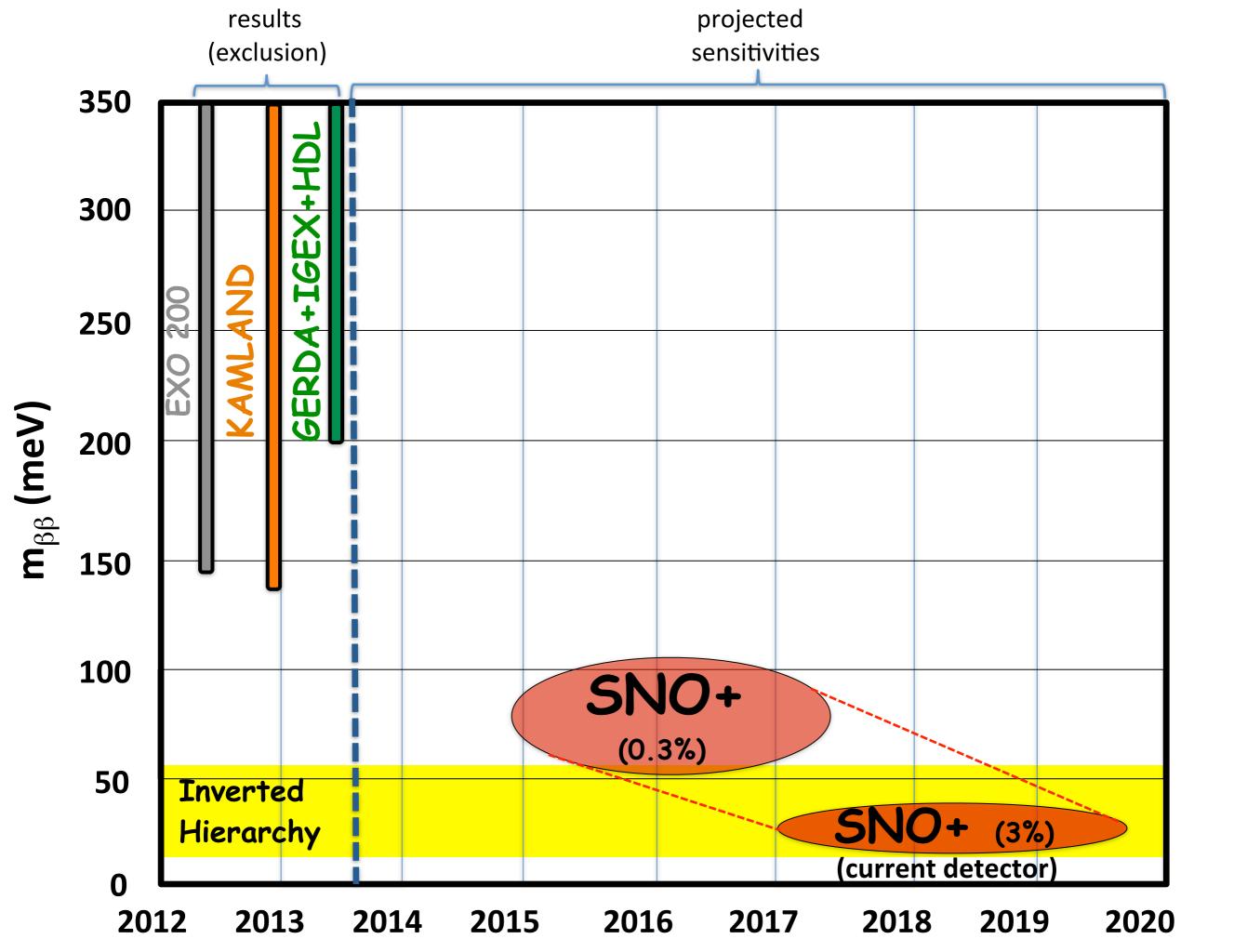

thermal recrystalisation


	N.		
Isotope	Events/yr in ROI	After stage 1	After stage 2 (UG)
$(Q > 2 \text{ MeV}, T_{1/2} > 20 \text{ days})$	after 1 yr	purification plus	purification plus
(\(\frac{\pi}{2}\) = 1/12 \(\frac{\pi}{2}\) = 0 \(\text{aujs}\)	surface exposure	5h re-exposure	6 months "cool-down"
⁴⁴ Sc (daughter of ⁴⁴ Ti)	5.41	1.80	1.89E-5
$^{46}\mathrm{Sc}$	20.3	0.04	9.30E-5
⁶⁰ Co (direct and daughter of ⁶⁰ Fe)	834	0.511	4.79E-3
⁶⁸ Ga (daughter of ⁶⁸ Ge)	344	0.703	2.03E-3
²⁶ Al	2.20E-4	2.63E-7	2.63E-9
⁸² Rb (daughter of ⁸² Sr)	440	2.56	1.74E-4
⁸⁸ Y (direct and daughter of ⁸⁸ Zr)	3.61E4	37.9	0.213
⁴² K (daughter of ⁴² Ar)	10.0	0.90	7.72E-5
$^{56}\mathrm{Co}$	0.350	6.83E-4	1.33E-6
⁵⁸ Co	0.252	5.29E-4	8.88E-7
$^{110m}\mathrm{Ag}$	3.61E3	3.60	0.022
110 Ag (daughter of 110m Ag) b	48.6	0.05	2.93E-4
¹⁰⁶ Rh (daughter of ¹⁰⁶ Ru)	21.8	0.022	1.58E-4
126m Sb (direct and daughter of 126 Sn) c	8.63	8.58	4.34E-7
¹²⁶ Sb (direct and daughter of ^{126m} Sb) ^d	1.29E4	154	5.44E-5
^{22}Na	1.01E3	0.711	6.22E-3
⁸⁴ Rb ^e	24.2	0.11	2.31E-5
⁹⁰ Y (daughter of ⁹⁰ Sr)	7.90E-3	2.77E-4	1.80E-8
$^{102}{\rm Rh}$ (direct and daughter of $^{102m}{\rm Rh})$ f	35.9	0.044	2.39E-4
$^{102m}\mathrm{Rh}$	69.9	0.060	5.45E-4
$^{124}\mathrm{Sb}$	1.62E5	417	0.509

Suppression of Other Troublesome Backgrounds

External y-ray backgrounds from AV, rope net. PMTs, water shielding etc. are attenuated by 2.6MeV vs Compton scattering (self-shielded fiducial volume) from 20871





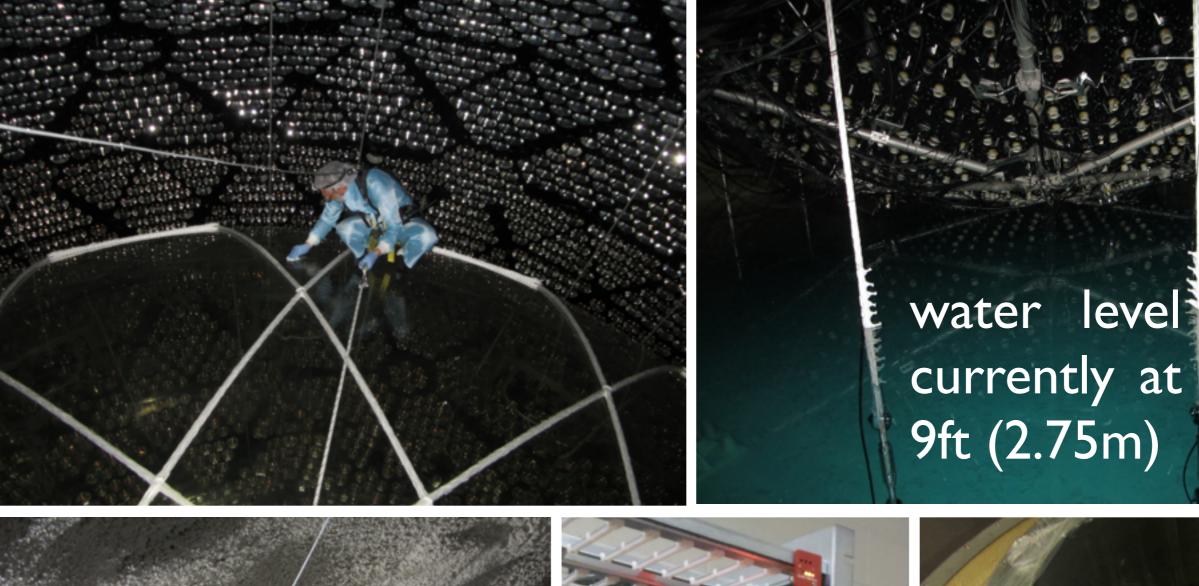
Sensitivity

Basic Detector Parameters for Phase I Demonstrator

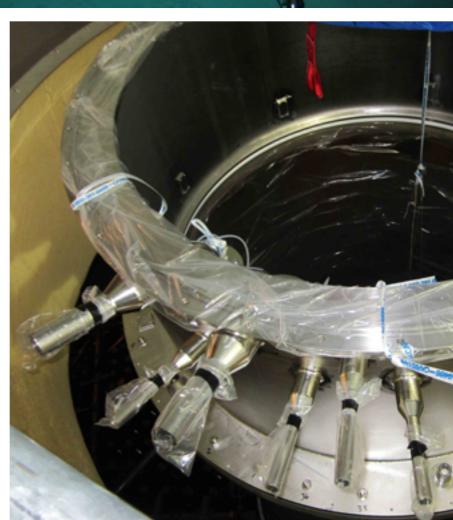
- Light Level: ~200-300 pe/MeV, depending on final optics and choice of secondary shifter.
 Assume 200 pe/MeV for this talk.
- Loading Level: 0.3-0.5% (0.8-1.3 tonnes ¹³⁰Te), depending on final Te system resources.
 Assume 0.3% for this talk.
- Fiducial Volume: 20-30%, depending on light level, loading fraction and final backgrounds.
 Assume 20% for this talk (R=3.5m,~10 times current K-Z fiducial volume)

The Pedigree of Bumps

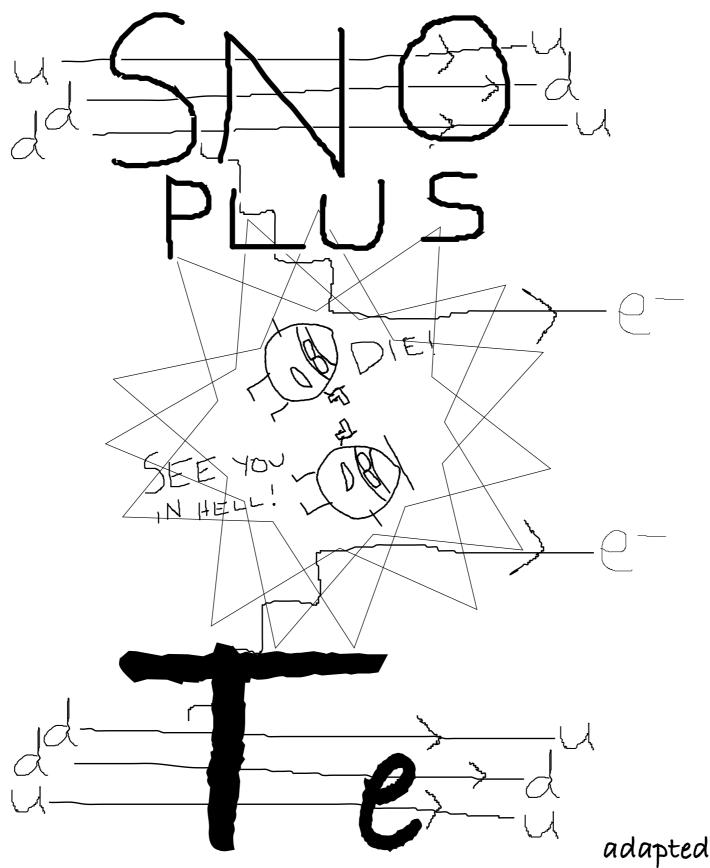
What If We See a Bump?


(Advantages of a large, self-shielding, liquid detector with good spatial resolution and a flexible configuration)

- Separately measure backgrounds prior to loading and increase or decreased the loading at later stages to see if it scales like a signal.
- Look at the radial, as well as energy dependence of any potential signal to look for signs of external backgrounds.
- Look for time dependencies of potential radioactive backgrounds.
- Remove Te and run it though additional targeted purification systems to reduce/test for any suspected contaminants.
- If the signal appears to be high enough in mass, could still deploy
 Nd (or some other isotope) as an independent check.
- Could upgrade detector with high QE PMTs and better concentrators to improve energy resolution and overall sensitivity.
- Other ideas in the works... (Cherenkov light? [Biller, 2013])



Present and Future



Schedule:

- Water level just below PMTs ("cool and clean").
- "Float the Boat" test: imminent.
- Larger scale Te(OH)₆ purification test: imminent.
- Order for initial Te(OH)₆ production: imminent.
- Completion of water-fill: end of 2013.
- Water running: start of 2014.
- Scintillator transition: mid-2014.
- Introduction of Te: end of 2014/start of 2015.

Potential for Future Upgrades

- Currently planned Phase I loading is only 0.3-0.5%
- Current peak SNO PMT efficiency is only ~15%
- Current effective photocathode coverage is only ~45%
- Current limiting external background is from the AV
- Current fiducial volume is only ~200 t (full cavity ~7kt)

adapted from A. Mastbaum (unofficial logo)